Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Behav Ecol ; 35(1): arad093, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38193012

RESUMO

Geographic differences in vocalizations provide strong evidence for animal culture, with patterns likely arising from generations of social learning and transmission. Most studies on the evolution of avian vocal variation have predominantly focused on fixed repertoire, territorial song in passerine birds. The study of vocal communication in open-ended learners and in contexts where vocalizations serve other functions is therefore necessary for a more comprehensive understanding of vocal dialect evolution. Parrots are open-ended vocal production learners that use vocalizations for social contact and coordination. Geographic variation in parrot vocalizations typically take the form of either distinct regional variations known as dialects or graded variation based on geographic distance known as clinal variation. In this study, we recorded monk parakeets (Myiopsitta monachus) across multiple spatial scales (i.e., parks and cities) in their European invasive range. We then compared calls using a multilevel Bayesian model and sensitivity analysis, with this novel approach allowing us to explicitly compare vocalizations at multiple spatial scales. We found support for founder effects and/or cultural drift at the city level, consistent with passive cultural processes leading to large-scale dialect differences. We did not find a strong signal for dialect or clinal differences between parks within cities, suggesting that birds did not actively converge on a group level signal, as expected under the group membership hypothesis. We demonstrate the robustness of our findings and offer an explanation that unifies the results of prior monk parakeet vocalization studies.

2.
R Soc Open Sci ; 10(10): 230835, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37800160

RESUMO

In humans, identity is partly encoded in a voice-print that is carried across multiple vocalizations. Other species also signal vocal identity in calls, such as shown in the contact call of parrots. However, it remains unclear to what extent other call types in parrots are individually distinct, and whether there is an analogous voice-print across calls. Here we test if an individual signature is present in other call types, how stable this signature is, and if parrots exhibit voice-prints across call types. We recorded 5599 vocalizations from 229 individually marked monk parakeets (Myiopsitta monachus) over a 2-year period in Barcelona, Spain. We examined five distinct call types, finding evidence for an individual signature in three. We further show that in the contact call, while birds are individually distinct, the calls are more variable than previously assumed, changing over short time scales (seconds to minutes). Finally, we provide evidence for voice-prints across multiple call types, with a discriminant function being able to predict caller identity across call types. This suggests that monk parakeets may be able to use vocal cues to recognize conspecifics, even across vocalization types and without necessarily needing active vocal signatures of identity.

3.
Proc Biol Sci ; 289(1971): 20212397, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35317667

RESUMO

Previous studies have demonstrated a correlation between longevity and brain size in a variety of taxa. Little research has been devoted to understanding this link in parrots; yet parrots are well-known for both their exceptionally long lives and cognitive complexity. We employed a large-scale comparative analysis that investigated the influence of brain size and life-history variables on longevity in parrots. Specifically, we addressed two hypotheses for evolutionary drivers of longevity: the cognitivebuffer hypothesis, which proposes that increased cognitive abilities enable longer lifespans, and the expensive brain hypothesis, which holds that increases in lifespan are caused by prolonged developmental time of, and increased parental investment in, large-brained offspring. We estimated life expectancy from detailed zoo records for 133 818 individuals across 244 parrot species. Using a principled Bayesian approach that addresses data uncertainty and imputation of missing values, we found a consistent correlation between relative brain size and life expectancy in parrots. This correlation was best explained by a direct effect of relative brain size. Notably, we found no effects of developmental time, clutch size or age at first reproduction. Our results suggest that selection for enhanced cognitive abilities in parrots has in turn promoted longer lifespans.


Assuntos
Papagaios , Animais , Teorema de Bayes , Evolução Biológica , Humanos , Expectativa de Vida , Tamanho do Órgão
4.
Science ; 363(6434): 1453-1455, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30846610

RESUMO

Chimpanzees possess a large number of behavioral and cultural traits among nonhuman species. The "disturbance hypothesis" predicts that human impact depletes resources and disrupts social learning processes necessary for behavioral and cultural transmission. We used a dataset of 144 chimpanzee communities, with information on 31 behaviors, to show that chimpanzees inhabiting areas with high human impact have a mean probability of occurrence reduced by 88%, across all behaviors, compared to low-impact areas. This behavioral diversity loss was evident irrespective of the grouping or categorization of behaviors. Therefore, human impact may not only be associated with the loss of populations and genetic diversity, but also affects how animals behave. Our results support the view that "culturally significant units" should be integrated into wildlife conservation.


Assuntos
Conservação dos Recursos Naturais/métodos , Pan troglodytes/psicologia , Comportamento Social , Animais , Conjuntos de Dados como Assunto , Humanos
5.
Ecol Evol ; 8(21): 10594-10607, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30464831

RESUMO

Adults sometimes disperse, while philopatric offspring inherit the natal site, a pattern known as bequeathal. Despite a decades-old empirical literature, little theoretical work has explored when natural selection may favor bequeathal. We present a simple mathematical model of the evolution of bequeathal in a stable environment, under both global and local dispersal. We find that natural selection favors bequeathal when adults are competitively advantaged over juveniles, baseline mortality is high, the environment is unsaturated, and when juveniles experience high dispersal mortality. However, frequently bequeathal may not evolve, because the fitness cost for the adult is too large relative to inclusive fitness benefits. Additionally, there are many situations for which bequeathal is an ESS, yet cannot invade the population. As bequeathal in real populations appears to be facultative, yet-to-be-modeled factors like timing of birth in the breeding season may strongly influence the patterns seen in natural populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA